In 2010, a major earthquake struck Haiti, destroying or damaging over 285,000 homes.[footnote]http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#summary. Accessed 3/4/2013.[/footnote] One year later, another, stronger earthquake devastated Honshu, Japan, destroying or damaging over 332,000 buildings,[footnote]http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary. Accessed 3/4/2013.[/footnote] like those shown in the picture below. Even though both caused substantial damage, the earthquake in 2011 was 100 times stronger than the earthquake in Haiti. How do we know? The magnitudes of earthquakes are measured on a scale known as the Richter Scale. The Haitian earthquake registered a 7.0 on the Richter Scale[footnote]http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/. Accessed 3/4/2013.[/footnote] whereas the Japanese earthquake registered a 9.0.[footnote]http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#details. Accessed 3/4/2013.[/footnote]
Devastation of March 11, 2011 earthquake in Honshu, Japan. (credit: Daniel Pierce)
The Richter Scale is a base-ten logarithmic scale. In other words, an earthquake of magnitude 8 is not twice as great as an earthquake of magnitude 4. It is 108−4=104=10,000 times as great! In this lesson, we will investigate the nature of the Richter Scale and the base-ten function upon which it depends.
Convert Between Logarithmic And Exponential Form
In order to analyze the magnitude of earthquakes or compare the magnitudes of two different earthquakes, we need to be able to convert between logarithmic and exponential form. For example, suppose the amount of energy released from one earthquake were 500 times greater than the amount of energy released from another. We want to calculate the difference in magnitude. The equation that represents this problem is 10x=500, where x represents the difference in magnitudes on the Richter Scale. How would we solve for x?
We have not yet learned a method for solving exponential equations. None of the algebraic tools discussed so far is sufficient to solve 10x=500. We know that 102=100 and 103=1000, so it is clear that x must be some value between 2 and 3, since y=10x is increasing. We can examine a graph to better estimate the solution.
Estimating from a graph, however, is imprecise. To find an algebraic solution, we must introduce a new function. Observe that the graph above passes the horizontal line test. The exponential function y=bx is one-to-one, so its inverse, x=by is also a function. As is the case with all inverse functions, we simply interchange x and y and solve for y to find the inverse function. To represent y as a function of x, we use a logarithmic function of the form y=logb(x). The base blogarithm of a number is the exponent by which we must raise b to get that number.
We read a logarithmic expression as, "The logarithm with base b of x is equal to y," or, simplified, "log base b of x is y." We can also say, "b raised to the power of y is x," because logs are exponents. For example, the base 2 logarithm of 32 is 5, because 5 is the exponent we must apply to 2 to get 32. Since 25=32, we can write log232=5. We read this as "log base 2 of 32 is 5."
We can express the relationship between logarithmic form and its corresponding exponential form as follows:
logb(x)=y⇔by=x,b>0,b=1
Note that the base b is always positive.
Because logarithm is a function, it is most correctly written as logb(x), using parentheses to denote function evaluation, just as we would with f(x). However, when the input is a single variable or number, it is common to see the parentheses dropped and the expression written without parentheses, as logbx. Note that many calculators require parentheses around the x.
We can illustrate the notation of logarithms as follows:
Notice that, comparing the logarithm function and the exponential function, the input and the output are switched. This means y=logb(x) and y=bx are inverse functions.
A General Note: Definition of the Logarithmic Function
A logarithm base b of a positive number x satisfies the following definition.
For x>0,b>0,b=1,
y=logb(x) is equivalent to by=x
where,
we read logb(x) as, "the logarithm with base b of x" or the "log base b of x."
the logarithm y is the exponent to which b must be raised to get x.
Also, since the logarithmic and exponential functions switch the x and y values, the domain and range of the exponential function are interchanged for the logarithmic function. Therefore,
the domain of the logarithm function with base b is(0,∞).
the range of the logarithm function with base b is(−∞,∞).
Q & A
Can we take the logarithm of a negative number?
No. Because the base of an exponential function is always positive, no power of that base can ever be negative. We can never take the logarithm of a negative number. Also, we cannot take the logarithm of zero. Calculators may output a log of a negative number when in complex mode, but the log of a negative number is not a real number.
How To: Given an equation in logarithmic form logb(x)=y, convert it to exponential form.
Examine the equation y=logbx and identify b, y, and x.
Rewrite logbx=y as by=x.
Example: Converting from Logarithmic Form to Exponential Form
Write the following logarithmic equations in exponential form.
log6(6)=21
log3(9)=2
Answer:
First, identify the values of b, y, and x. Then, write the equation in the form by=x.
log6(6)=21 Here, b=6,y=21,and x=6. Therefore, the equation log6(6)=21 is equivalent to 621=6.
log3(9)=2 Here, b = 3, y = 2, and x = 9. Therefore, the equation log3(9)=2 is equivalent to 32=9.
Try It
Write the following logarithmic equations in exponential form.
log10(1,000,000)=6
log5(25)=2
Answer:
log10(1,000,000)=6 is equivalent to 106=1,000,000
log5(25)=2 is equivalent to 52=25
Convert from exponential to logarithmic form
To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base b, exponent x, and output y. Then we write x=logb(y).
Example: Converting from Exponential Form to Logarithmic Form
Write the following exponential equations in logarithmic form.
23=8
52=25
10−4=10,0001
Answer:
First, identify the values of b, y, and x. Then, write the equation in the form x=logb(y).
23=8 Here, b = 2, x = 3, and y = 8. Therefore, the equation 23=8 is equivalent to log2(8)=3.
52=25 Here, b = 5, x = 2, and y = 25. Therefore, the equation 52=25 is equivalent to log5(25)=2.
10−4=10,0001 Here, b = 10, x = –4, and y=10,0001. Therefore, the equation 10−4=10,0001 is equivalent to log10(10,0001)=−4.
Try It
Write the following exponential equations in logarithmic form.
32=9
53=125
2−1=21
Answer:
32=9 is equivalent to log3(9)=2
53=125 is equivalent to log5(125)=3
2−1=21 is equivalent to log2(21)=−1
Evaluate Logarithms
Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example, consider log28. We ask, "To what exponent must 2 be raised in order to get 8?" Because we already know 23=8, it follows that log28=3.
Now consider solving log749 and log327 mentally.
We ask, "To what exponent must 7 be raised in order to get 49?" We know 72=49. Therefore, log749=2
We ask, "To what exponent must 3 be raised in order to get 27?" We know 33=27. Therefore, log327=3
Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate log3294 mentally.
We ask, "To what exponent must 32 be raised in order to get 94? " We know 22=4 and 32=9, so (32)2=94. Therefore, log32(94)=2.
How To: Given a logarithm of the form y=logb(x), evaluate it mentally.
Rewrite the argument x as a power of b: by=x.
Use previous knowledge of powers of b identify y by asking, "To what exponent should b be raised in order to get x?"
Example: Solving Logarithms Mentally
Solve y=log4(64) without using a calculator.
Answer:
First we rewrite the logarithm in exponential form: 4y=64. Next, we ask, "To what exponent must 4 be raised in order to get 64?"
We know 43=64
Therefore,
log4(64)=3
Try It
Solve y=log121(11) without using a calculator.
Answer: log121(11)=21 (recalling that 121=(121)21=11 )
Example: Evaluating the Logarithm of a Reciprocal
Evaluate y=log3(271) without using a calculator.
Answer:
First we rewrite the logarithm in exponential form: 3y=271. Next, we ask, "To what exponent must 3 be raised in order to get 271"?
We know 33=27, but what must we do to get the reciprocal, 271? Recall from working with exponents that b−a=ba1. We use this information to write
3−3=331=271
Therefore, log3(271)=−3.
Try It
Evaluate y=log2(321) without using a calculator.
Answer: log2(321)=−5
Use common logarithms
To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base b, exponent x, and output y. Then we write x=logb(y).
Example: Converting from Exponential Form to Logarithmic Form
Write the following exponential equations in logarithmic form.
23=8
52=25
10−4=10,0001
Answer: First, identify the values of b, y, and x. Then, write the equation in the form x=logb(y).
23=8Here, b = 2, x = 3, and y = 8. Therefore, the equation 23=8 is equivalent to log2(8)=3.
52=25Here, b = 5, x = 2, and y = 25. Therefore, the equation 52=25 is equivalent to log5(25)=2.
10−4=10,0001Here, b = 10, x = –4, and y=10,0001. Therefore, the equation 10−4=10,0001 is equivalent to log10(10,0001)=−4.
Try It
Write the following exponential equations in logarithmic form.
32=9
53=125
2−1=21
Answer:
32=9 is equivalent to log3(9)=2
53=125 is equivalent to log5(125)=3
2−1=21 is equivalent to log2(21)=−1
Key Equations
Definition of the logarithmic function
For x>0,b>0,b=1,y=logb(x) if and only if by=x.
Definition of the common logarithm
For x>0, y=log(x) if and only if 10y=x.
Definition of the natural logarithm
For x>0, y=ln(x) if and only if ey=x.
Key Concepts
The inverse of an exponential function is a logarithmic function, and the inverse of a logarithmic function is an exponential function.
Logarithmic equations can be written in an equivalent exponential form, using the definition of a logarithm.
Exponential equations can be written in their equivalent logarithmic form using the definition of a logarithm.
Logarithmic functions with base b can be evaluated mentally using previous knowledge of powers of b.
Common logarithms can be evaluated mentally using previous knowledge of powers of 10.
When common logarithms cannot be evaluated mentally, a calculator can be used.
Real-world exponential problems with base 10 can be rewritten as a common logarithm and then evaluated using a calculator.
Natural logarithms can be evaluated using a calculator.
Glossary
common logarithm the exponent to which 10 must be raised to get x; log10(x) is written simply as log(x).
logarithm the exponent to which b must be raised to get x; written y=logb(x)natural logarithm the exponent to which the number e must be raised to get x; loge(x) is written as ln(x).
Licenses & Attributions
CC licensed content, Original
Revision and Adaptation.Provided by: Lumen LearningLicense: CC BY: Attribution.
CC licensed content, Shared previously
Precalculus.Provided by: OpenStaxAuthored by: Jay Abramson, et al..Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions.License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175..
College Algebra.Provided by: OpenStaxAuthored by: Abramson, Jay et al..License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2.
Question ID 29668, 29661.Authored by: McClure, Caren.License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
Question ID 35022.Authored by: Jim Smart.License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.