Aggiorna a pro
Vai al sito
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluzioni
Calcolatore integrale
Calcolatore di derivate
Calcolatore di algebra
Calcolatore della matrice
Di più...
Grafico
Grafico lineare
Grafico esponenziale
Grafico quadratico
Grafico sinusoidale
Di più...
Calcolatrici
Calcolatore dell'IMC
Calcolatore dell'interesse composto
Calcolatore percentuale
Calcolatore dell'accelerazione
Di più...
Geometria
Calcolatore del teorema di Pitagora
Calcolatore dell'area del cerchio
Calcolatore del triangolo isoscele
Calcolatore dei triangoli
Di più...
Utensili
Notebook
Gruppi
Trucchetti
Fogli di lavoro
Guide allo studio
Pratica
Verifica soluzione
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Aggiornamento
Problemi popolari
Argomenti
Pre algebra
Algebra
Problemi di parole
Functions & Graphing
Geometria
Trigonometria
Pre Calculus
Calcoli
Dati statistici
Popolari Trigonometria Problemi
dimostrare ((cot(x)))/((csc(x)))=cos(x)
prove
(
cot
(
x
)
)
(
csc
(
x
)
)
=
cos
(
x
)
dimostrare ((sec^2(t)))/(sec^2(t)-1)=csc^2(t)
prove
(
sec
2
(
t
)
)
sec
2
(
t
)
−
1
=
csc
2
(
t
)
dimostrare sin^2(x)=cos(2x)+2
prove
sin
2
(
x
)
=
cos
(
2
x
)
+
2
dimostrare 1+cos^2(x)=2-sin^2(x)
prove
1
+
cos
2
(
x
)
=
2
−
sin
2
(
x
)
dimostrare sin^2(x)=cos(2x)-2
prove
sin
2
(
x
)
=
cos
(
2
x
)
−
2
dimostrare (tan(θ)cot(θ))/(cos(θ))=sec(θ)
prove
tan
(
θ
)
cot
(
θ
)
cos
(
θ
)
=
sec
(
θ
)
dimostrare 2(cos(θ-1))^2=cos^4(θ)-sin^4(θ)
prove
2
(
cos
(
θ
−
1
)
)
2
=
cos
4
(
θ
)
−
sin
4
(
θ
)
dimostrare cos(x)= 15/17
prove
cos
(
x
)
=
1
5
1
7
dimostrare csc(A)-sin(A)=(cos(A))(cot(A))
prove
csc
(
A
)
−
sin
(
A
)
=
(
cos
(
A
)
)
(
cot
(
A
)
)
dimostrare (cos^2(x))/(cos^2(x))=1
prove
cos
2
(
x
)
cos
2
(
x
)
=
1
dimostrare (1-sec(x))/(csc(x))=cos(x)(cot(x))
prove
1
−
sec
(
x
)
csc
(
x
)
=
cos
(
x
)
(
cot
(
x
)
)
dimostrare csc(x)tan(x)sec(x)=sec^2(x)
prove
csc
(
x
)
tan
(
x
)
sec
(
x
)
=
sec
2
(
x
)
dimostrare tan(x)sec^4(x)=(sin(x))/(cos^5(x))
prove
tan
(
x
)
sec
4
(
x
)
=
sin
(
x
)
cos
5
(
x
)
dimostrare csc(x)+cot(x)sec(x)-1=tan(x)
prove
csc
(
x
)
+
cot
(
x
)
sec
(
x
)
−
1
=
tan
(
x
)
dimostrare (3csc(x)-3sin(x))/(tan(x)-cot(x))=3cos^3(x)
prove
3
csc
(
x
)
−
3
sin
(
x
)
tan
(
x
)
−
cot
(
x
)
=
3
cos
3
(
x
)
dimostrare 9cos(x)+6sin(x)=10
prove
9
cos
(
x
◦
)
+
6
sin
(
x
◦
)
=
1
0
dimostrare (tan^2(A))/(sec^2(A))=sin^2(A)
prove
tan
2
(
A
)
sec
2
(
A
)
=
sin
2
(
A
)
dimostrare 5cos^2(x)-2cos(x)-3-sin^2(x)=0
prove
5
cos
2
(
x
)
−
2
cos
(
x
)
−
3
−
sin
2
(
x
)
=
0
dimostrare cos^4(a)+1-sin^4(a)=2cos^2(a)
prove
cos
4
(
a
)
+
1
−
sin
4
(
a
)
=
2
cos
2
(
a
)
dimostrare 3-4cos^2(x)=(2sin(x)+1)(2sin(x)-1)
prove
3
−
4
cos
2
(
x
)
=
(
2
sin
(
x
)
+
1
)
(
2
sin
(
x
)
−
1
)
dimostrare csc^2(θ)=(1/(sin(θ)))^2
prove
csc
2
(
θ
)
=
(
1
sin
(
θ
)
)
2
dimostrare (1+tan(x))/(1+1/(tan(x)))=tan(x)
prove
1
+
tan
(
x
)
1
+
1
tan
(
x
)
=
tan
(
x
)
dimostrare cos(2θ)= 1/(sec(2θ))
prove
cos
(
2
θ
)
=
1
sec
(
2
θ
)
dimostrare (cos(3x)-cos(x))=-2sin(2x)sin(x)
prove
(
cos
(
3
x
)
−
cos
(
x
)
)
=
−
2
sin
(
2
x
)
sin
(
x
)
dimostrare sec(pi/2-y)=csc(y)
prove
sec
(
π
2
−
y
)
=
csc
(
y
)
dimostrare cos(2x-pi/2)=cos(pi/2-2x)
prove
cos
(
2
x
−
π
2
)
=
cos
(
π
2
−
2
x
)
dimostrare sin(pi/2-x)cot(pi/2+x)=-sin(x)
prove
sin
(
π
2
−
x
)
cot
(
π
2
+
x
)
=
−
sin
(
x
)
dimostrare cos(x)*csc(x)*tan(x)=1
prove
cos
(
x
)
·
csc
(
x
)
·
tan
(
x
)
=
1
dimostrare cos^2(x) 1/(cos^2(x))=1
prove
cos
2
(
x
)
1
cos
2
(
x
)
=
1
dimostrare (sin((4pi)/3))=-(sqrt(3))/2
prove
(
sin
(
4
π
3
)
)
=
−
√
3
2
dimostrare sec(x)-sin^2(x)=cos(x)
prove
sec
(
x
)
−
sin
2
(
x
)
=
cos
(
x
)
dimostrare cot^2(x)=csc^2(x)(1-sin^2(x))
prove
cot
2
(
x
)
=
csc
2
(
x
)
(
1
−
sin
2
(
x
)
)
dimostrare (cos(2θ))/(-sin^2(θ))=cos^2(θ)
prove
cos
(
2
θ
)
−
sin
2
(
θ
)
=
cos
2
(
θ
)
dimostrare sin(x)+cot(x)(cos(x))=csc(x)
prove
sin
(
x
)
+
cot
(
x
)
(
cos
(
x
)
)
=
csc
(
x
)
dimostrare 1/(csc(x)-1)=(sin(x))/1
prove
1
csc
(
x
)
−
1
=
sin
(
x
)
1
dimostrare sec(θ)cos(θ)csc(θ)=cot(θ)
prove
sec
(
θ
)
cos
(
θ
)
csc
(
θ
)
=
cot
(
θ
)
dimostrare csc^2(x)(1-cos^2(x))=tan(420)
prove
csc
2
(
x
)
(
1
−
cos
2
(
x
)
)
=
tan
(
4
2
0
◦
)
dimostrare cos(θ+30)-sin(θ+60)=-sin(θ)
prove
cos
(
θ
+
3
0
◦
)
−
sin
(
θ
+
6
0
◦
)
=
−
sin
(
θ
)
dimostrare tan(a)*cot(a)=sin^2(a)+cos^2(a)
prove
tan
(
a
)
·
cot
(
a
)
=
sin
2
(
a
)
+
cos
2
(
a
)
dimostrare tan(x)+(cos(x))/(1-sin(x))=sec(x)
prove
tan
(
x
)
+
cos
(
x
)
1
−
sin
(
x
)
=
sec
(
x
)
dimostrare sin(x)cos(x)=tan(x)
prove
sin
(
x
)
cos
(
x
)
=
tan
(
x
)
dimostrare cot((15pi)/8)=cot((7pi)/8)
prove
cot
(
1
5
π
8
)
=
cot
(
7
π
8
)
dimostrare sin^4(x)=(sin^2(x))^2
prove
sin
4
(
x
)
=
(
sin
2
(
x
)
)
2
dimostrare sin(2x)-cos(2x)= 1/2
prove
sin
(
2
x
)
−
cos
(
2
x
)
=
1
2
dimostrare cos^{(2)}(θ)(1+tan^{(2)}(θ))=1
prove
cos
(
2
)
(
θ
)
(
1
+
tan
(
2
)
(
θ
)
)
=
1
dimostrare 1-2sin^2(y)+sin^4(y)=cos^4(y)
prove
1
−
2
sin
2
(
y
)
+
sin
4
(
y
)
=
cos
4
(
y
)
dimostrare (sin(x)+cos(x))^2-2sin(x)cos(x)=1
prove
(
sin
(
x
)
+
cos
(
x
)
)
2
−
2
sin
(
x
)
cos
(
x
)
=
1
dimostrare (1-sin(3a))(sin(3a)+1)=cos^2(3a)
prove
(
1
−
sin
(
3
a
)
)
(
sin
(
3
a
)
+
1
)
=
cos
2
(
3
a
)
dimostrare (sin(x))/(1+cos(2x))=tan(x)
prove
sin
(
x
)
1
+
cos
(
2
x
)
=
tan
(
x
)
dimostrare sec(t)(csc(t)(tan(t)+cot(t)))=sec^2(t)+csc^2(t)
prove
sec
(
t
)
(
csc
(
t
)
(
tan
(
t
)
+
cot
(
t
)
)
)
=
sec
2
(
t
)
+
csc
2
(
t
)
dimostrare (1+sin(x))^2+cos^2(x)=2+2sin(x)
prove
(
1
+
sin
(
x
)
)
2
+
cos
2
(
x
)
=
2
+
2
sin
(
x
)
dimostrare cot(60)=(cos(60))/(sin(60))
prove
cot
(
6
0
◦
)
=
cos
(
6
0
◦
)
sin
(
6
0
◦
)
dimostrare tan(-x)tan(pi/2-x)=-1
prove
tan
(
−
x
)
tan
(
π
2
−
x
)
=
−
1
dimostrare tan(pi-θ)=-tan(x)
prove
tan
(
π
−
θ
)
=
−
tan
(
x
)
dimostrare cot(θ)(sin(θ)+tan(θ))=cos(θ)+1
prove
cot
(
θ
)
(
sin
(
θ
)
+
tan
(
θ
)
)
=
cos
(
θ
)
+
1
dimostrare (2-sin^2(x))csc^2(x)=cot^2(x)
prove
(
2
−
sin
2
(
x
)
)
csc
2
(
x
)
=
cot
2
(
x
)
dimostrare 1/(tan(A))+tan(A)= 2/(sin(2A))
prove
1
tan
(
A
)
+
tan
(
A
)
=
2
sin
(
2
A
)
dimostrare 1+sin(θ)=cos(θ)
prove
1
+
sin
(
θ
)
=
cos
(
θ
)
dimostrare 1+((tan^2(x)))/(1+sec(x))=sec(x)
prove
1
+
(
tan
2
(
x
)
)
1
+
sec
(
x
)
=
sec
(
x
)
dimostrare csc^2(x)*cos^2(x)=cot^2(x)
prove
csc
2
(
x
)
·
cos
2
(
x
)
=
cot
2
(
x
)
dimostrare 1/(sec^3(x)cos^4(x))=sec(x)
prove
1
sec
3
(
x
)
cos
4
(
x
)
=
sec
(
x
)
dimostrare csc^2(θ)+1=cot^2(θ)
prove
csc
2
(
θ
)
+
1
=
cot
2
(
θ
)
dimostrare 1+tan^2(B)=sec^2(B)
prove
1
+
tan
2
(
B
)
=
sec
2
(
B
)
dimostrare cos^2(7θ)-sin^2(7θ)=cos(14θ)
prove
cos
2
(
7
θ
)
−
sin
2
(
7
θ
)
=
cos
(
1
4
θ
)
dimostrare sin^4(x)-(3/(4*sin^2(x)))+1=1
prove
sin
4
(
x
)
−
(
3
4
·
sin
2
(
x
)
)
+
1
=
1
dimostrare arccot(x)=tan(x)
prove
arccot
(
x
)
=
tan
(
x
)
dimostrare cot(θ)+tan(θ)=sec(θ)+csc(θ)
prove
cot
(
θ
)
+
tan
(
θ
)
=
sec
(
θ
)
+
csc
(
θ
)
dimostrare 2sin(θ)+sin(2θ)=0
prove
2
sin
(
θ
)
+
sin
(
2
θ
)
=
0
dimostrare cos^2(x)+cos(x)-1+sin^2(x)=cos(x)
prove
cos
2
(
x
)
+
cos
(
x
)
−
1
+
sin
2
(
x
)
=
cos
(
x
)
dimostrare (2sin(x)cos(x))/(cos(x))=2
prove
2
sin
(
x
)
cos
(
x
)
cos
(
x
)
=
2
dimostrare tan(x-(3pi)/2)=-cot(x)
prove
tan
(
x
−
3
π
2
)
=
−
cot
(
x
)
dimostrare sin(θ)(cos^2(θ))/(sin(θ))=csc(θ)
prove
sin
(
θ
)
cos
2
(
θ
)
sin
(
θ
)
=
csc
(
θ
)
dimostrare (tan^2(a)+1)/(sec(a))=sec(a)
prove
tan
2
(
a
)
+
1
sec
(
a
)
=
sec
(
a
)
dimostrare 1/(tan(β)+cot(β))=sin(β)cos(β)
prove
1
tan
(
β
)
+
cot
(
β
)
=
sin
(
β
)
cos
(
β
)
dimostrare cos(300)=1-2sin^2(150)
prove
cos
(
3
0
0
◦
)
=
1
−
2
sin
2
(
1
5
0
◦
)
dimostrare csc^2(x)+3cot^2(x)-5=4(cot(x)-1)
prove
csc
2
(
x
)
+
3
cot
2
(
x
)
−
5
=
4
(
cot
(
x
)
−
1
)
dimostrare (3)((cos(2z))^2)/2 =(3cos(4z))/4
prove
(
3
)
(
cos
(
2
z
)
)
2
2
=
3
cos
(
4
z
)
4
dimostrare-2sin^2(x)+cos(x)+1=0
prove
−
2
sin
2
(
x
)
+
cos
(
x
)
+
1
=
0
dimostrare (2cot(u))/(csc^2(u)-2)=tan(2u)
prove
2
cot
(
u
)
csc
2
(
u
)
−
2
=
tan
(
2
u
)
dimostrare csc(2x)+cot(2x)=(1+cos(2x))/(sin(2x))
prove
csc
(
2
x
)
+
cot
(
2
x
)
=
1
+
cos
(
2
x
)
sin
(
2
x
)
dimostrare 1-2sin^2(t)=2cos^2(t)-1
prove
1
−
2
sin
2
(
t
)
=
2
cos
2
(
t
)
−
1
dimostrare 1/(cos^2(θ))=sec^2(θ)
prove
1
cos
2
(
θ
)
=
sec
2
(
θ
)
dimostrare-cos(2t)sin(2t)+sin(2t)cos(2t)+0=0
prove
−
cos
(
2
t
)
sin
(
2
t
)
+
sin
(
2
t
)
cos
(
2
t
)
+
0
=
0
dimostrare (tan(θ)sin(θ))/(sec(θ)-1)=1+cos(θ)
prove
tan
(
θ
)
sin
(
θ
)
sec
(
θ
)
−
1
=
1
+
cos
(
θ
)
dimostrare 1-2sin^2(x)=-1+cos^2(x)
prove
1
−
2
sin
2
(
x
)
=
−
1
+
cos
2
(
x
)
dimostrare (sin(x)sin(x))/(cos(x))=cos(x)
prove
sin
(
x
)
sin
(
x
)
cos
(
x
)
=
cos
(
x
)
dimostrare (cos(x))/5 = 1/5*cos(x)
prove
cos
(
x
)
5
=
1
5
·
cos
(
x
)
dimostrare (1+tan(x))/(sec(x))=cos(x)+sin(x)
prove
1
+
tan
(
x
)
sec
(
x
)
=
cos
(
x
)
+
sin
(
x
)
dimostrare (sin(4x))/4 =(sin(x)cos(x))/2
prove
sin
(
4
x
)
4
=
sin
(
x
)
cos
(
x
)
2
dimostrare (sin(x)tan(x))/(cos(x)+1)=sec(x)-1
prove
sin
(
x
)
tan
(
x
)
cos
(
x
)
+
1
=
sec
(
x
)
−
1
dimostrare sin(a+b)-sin(a-b)=2sin(a)sin(b)
prove
sin
(
a
+
b
)
−
sin
(
a
−
b
)
=
2
sin
(
a
)
sin
(
b
)
dimostrare sec(x)+1=(tan^2(x))/(sec(x)-1)
prove
sec
(
x
)
+
1
=
tan
2
(
x
)
sec
(
x
)
−
1
dimostrare (sin(x))/(1-cos^2(x))=cos(x)
prove
sin
(
x
)
1
−
cos
2
(
x
)
=
cos
(
x
)
dimostrare sin^2(x)-cos^2(x)=2(sin^2(x))-1
prove
sin
2
(
x
)
−
cos
2
(
x
)
=
2
(
sin
2
(
x
)
)
−
1
dimostrare sin^2(3x)=9sin^3(x)cos^3(x)
prove
sin
2
(
3
x
)
=
9
sin
3
(
x
)
cos
3
(
x
)
dimostrare sin^2(x)+cos(-2x)=cos^2(x)
prove
sin
2
(
x
)
+
cos
(
−
2
x
)
=
cos
2
(
x
)
dimostrare sin(pi/2+a)=cos(a)
prove
sin
(
π
2
+
a
)
=
cos
(
a
)
dimostrare 2sin^2(x)-cos(x)-2=0
prove
2
sin
2
(
x
)
−
cos
(
x
)
−
2
=
0
dimostrare csc(t)-sin(t)=cot(t)*cos(t)
prove
csc
(
t
)
−
sin
(
t
)
=
cot
(
t
)
·
cos
(
t
)
dimostrare (tan(θ)+6)/(sec(θ))=6cos(θ)+sin(θ)
prove
tan
(
θ
)
+
6
sec
(
θ
)
=
6
cos
(
θ
)
+
sin
(
θ
)
1
..
215
216
217
218
219
..
345