Aggiorna a pro
Vai al sito
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluzioni
Calcolatore integrale
Calcolatore di derivate
Calcolatore di algebra
Calcolatore della matrice
Di più...
Grafico
Grafico lineare
Grafico esponenziale
Grafico quadratico
Grafico sinusoidale
Di più...
Calcolatrici
Calcolatore dell'IMC
Calcolatore dell'interesse composto
Calcolatore percentuale
Calcolatore dell'accelerazione
Di più...
Geometria
Calcolatore del teorema di Pitagora
Calcolatore dell'area del cerchio
Calcolatore del triangolo isoscele
Calcolatore dei triangoli
Di più...
Utensili
Notebook
Gruppi
Trucchetti
Fogli di lavoro
Guide allo studio
Pratica
Verifica soluzione
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Aggiornamento
Problemi popolari
Argomenti
Pre algebra
Algebra
Problemi di parole
Functions & Graphing
Geometria
Trigonometria
Pre Calculus
Calcoli
Dati statistici
Popolari Pre Calculus Problemi
polar (5,0)
polar
(
5
,
0
)
slopeintercept y=2(5x+1)+3(5x+3)
slopeintercept
y
=
2
(
5
x
+
1
)
+
3
(
5
x
+
3
)
x=10
x
=
1
0
semplificare (-2.3)(10.3)
simplify
(
−
2
.
3
)
(
1
0
.
3
)
derivative f(x)= 5/x ,\at x=-1
derivative
f
(
x
)
=
5
x
,
at
x
=
−
1
x=ln(2)
x
=
ln
(
2
)
derivative-e^{-x}
derivative
−
e
−
x
polar (2,-1)
polar
(
2
,
−
1
)
tangent x^3
tangent
x
3
derivative-1/x
derivative
−
1
x
tangent y=x^3-2x^2+4,(2,4)
tangent
y
=
x
3
−
2
x
2
+
4
,
(
2
,
4
)
integrale e^{x^2}
integral
e
x
2
pendenza 3x+y-15=0
slope
3
x
+
y
−
1
5
=
0
tangent f(x)=2x^2+7x-9,\at x=-3
tangent
f
(
x
)
=
2
x
2
+
7
x
−
9
,
at
x
=
−
3
derivative f(x)=(2x+1)^2
derivative
f
(
x
)
=
(
2
x
+
1
)
2
polar (2,-2sqrt(3))
polar
(
2
,
−
2
√
3
)
derivative y=2x
derivative
y
=
2
x
derivative y=sin(3x)
derivative
y
=
sin
(
3
x
)
derivative f(x)=\sqrt[5]{x^4}
derivative
f
(
x
)
=
5
√
x
4
derivative-sin(x)
derivative
−
sin
(
x
)
punto medio (-9,-4),(-1,6)
midpoint
(
−
9
,
−
4
)
,
(
−
1
,
6
)
z=1+i
z
=
1
+
i
derivative f(x)=-9/x ,\at x=-4
derivative
f
(
x
)
=
−
9
x
,
at
x
=
−
4
pendenza 2
slope
2
Y=3
Y
=
3
pendenza 3x+2y-4=0
slope
3
x
+
2
y
−
4
=
0
derivative xe^{-2x}
derivative
xe
−
2
x
derivative y=sin(x)
derivative
y
=
sin
(
x
)
pendenza (1,2),(5,-1)
slope
(
1
,
2
)
,
(
5
,
−
1
)
perpendicolare y=-2x+5
perpendicular
y
=
−
2
x
+
5
derivative y=e^{-x}
derivative
y
=
e
−
x
distanza (-2,-6),(0,5)
distance
(
−
2
,
−
6
)
,
(
0
,
5
)
derivative f(x)=x^2-1,x=-1
derivative
f
(
x
)
=
x
2
−
1
,
x
=
−
1
integrale y/((1+y^2))
integral
y
(
1
+
y
2
)
retta (0,0),(1,1)
line
(
0
,
0
)
,
(
1
,
1
)
derivative y=sqrt(x^2+1)
derivative
y
=
√
x
2
+
1
polar (3,-4)
polar
(
3
,
−
4
)
derivative f(x)=(x^2-1)/(x^2+1)
derivative
f
(
x
)
=
x
2
−
1
x
2
+
1
tangent y=(5x)/(x-3),(4,20)
tangent
y
=
5
x
x
−
3
,
(
4
,
2
0
)
derivative y=(x+1)/(x-1)
derivative
y
=
x
+
1
x
−
1
f=e
f
=
e
integrale xe^{x^2}
integral
xe
x
2
tangent f(x)=x^3
tangent
f
(
x
)
=
x
3
derivative 2sin(x)
derivative
2
sin
(
x
)
pendenza y=2x-4
slope
y
=
2
x
−
4
θ= pi/3
θ
=
π
3
derivative f(x)=x^2+x
derivative
f
(
x
)
=
x
2
+
x
x=-3
x
=
−
3
tangent y=8cos(3x)-2sin(4x)
tangent
y
=
8
cos
(
3
x
)
−
2
sin
(
4
x
)
derivative-x/2
derivative
−
x
2
polar (5,-5)
polar
(
5
,
−
5
)
derivative f(x)=(x^2-1)^2
derivative
f
(
x
)
=
(
x
2
−
1
)
2
punto medio (1,2),(1,-5)
midpoint
(
1
,
2
)
,
(
1
,
−
5
)
cartesian (-4,pi)
cartesian
(
−
4
,
π
)
derivative 4x^3
derivative
4
x
3
semplificare (-4.2)(8.5)
simplify
(
−
4
.
2
)
(
8
.
5
)
cartesian (2,(11pi)/6)
cartesian
(
2
,
1
1
π
6
)
pendenza 5y+2x=12
slope
5
y
+
2
x
=
1
2
derivative x^2cos(x)
derivative
x
2
cos
(
x
)
cartesian (4,0)
cartesian
(
4
,
0
)
derivative f(x)=2xsin(3x)
derivative
f
(
x
)
=
2
x
sin
(
3
x
)
derivative y=(2x+1)/(2x-1)
derivative
y
=
2
x
+
1
2
x
−
1
pendenza 3x-45-15y=0
slope
3
x
−
4
5
−
1
5
y
=
0
derivative y=(x^2+4x+3)/(sqrt(x))
derivative
y
=
x
2
+
4
x
+
3
√
x
derivative f(x)=(1-sec(x))/(tan(x))
derivative
f
(
x
)
=
1
−
sec
(
x
)
tan
(
x
)
x=-2
x
=
−
2
perpendicolare y=2x-5
perpendicular
y
=
2
x
−
5
derivative f(x)=xe^{-x^2}
derivative
f
(
x
)
=
xe
−
x
2
derivative y=tan(x)
derivative
y
=
tan
(
x
)
polar (-sqrt(3),1)
polar
(
−
√
3
,
1
)
punto medio (-6,-3),(2,7)
midpoint
(
−
6
,
−
3
)
,
(
2
,
7
)
pendenza y+3=-4(x+7)
slope
y
+
3
=
−
4
(
x
+
7
)
retta (4,2),(-3,1)
line
(
4
,
2
)
,
(
−
3
,
1
)
cartesian (6,-(2pi)/3)
cartesian
(
6
,
−
2
π
3
)
derivative x^2+1
derivative
x
2
+
1
derivative x-3
derivative
x
−
3
derivative y=x^{ln(x)}
derivative
y
=
x
ln
(
x
)
polar (-6,6)
polar
(
−
6
,
6
)
derivative f(x)=e^{1/x}
derivative
f
(
x
)
=
e
1
x
punto medio (7,-12),(-5,-15)
midpoint
(
7
,
−
1
2
)
,
(
−
5
,
−
1
5
)
cartesian (-3,-pi/6)
cartesian
(
−
3
,
−
π
6
)
punto medio (-2,-7),(7,4)
midpoint
(
−
2
,
−
7
)
,
(
7
,
4
)
punto medio (3,17),(-14,-8)
midpoint
(
3
,
1
7
)
,
(
−
1
4
,
−
8
)
retta θ=(4pi)/3
line
θ
=
4
π
3
retta (3, 1/4),(3/2 ,7)
line
(
3
,
1
4
)
,
(
3
2
,
7
)
derivative y=ln(sqrt(x))
derivative
y
=
ln
(
√
x
)
derivative y=ln(x^2)
derivative
y
=
ln
(
x
2
)
derivative f(x)=sqrt(x+9)
derivative
f
(
x
)
=
√
x
+
9
derivative y=x^3
derivative
y
=
x
3
polar (-(9sqrt(3))/2 , 9/2)
polar
(
−
9
√
3
2
,
9
2
)
derivative xsqrt(1-x^2)
derivative
x
√
1
−
x
2
pendenza y=2x+1
slope
y
=
2
x
+
1
punto medio (3.2,2.5),(1.6,-4.5)
midpoint
(
3
.
2
,
2
.
5
)
,
(
1
.
6
,
−
4
.
5
)
derivative y=x^{sin(x)}
derivative
y
=
x
sin
(
x
)
polar (2,2sqrt(3))
polar
(
2
,
2
√
3
)
derivative f(x)=x^3-x-2
derivative
f
(
x
)
=
x
3
−
x
−
2
parallela 5x-y=4,(2,0)
parallel
5
x
−
y
=
4
,
(
2
,
0
)
semplificare (-1.4)(3.2)
simplify
(
−
1
.
4
)
(
3
.
2
)
punto medio (-7/3 , 3/4),(5/3 ,-9/4)
midpoint
(
−
7
3
,
3
4
)
,
(
5
3
,
−
9
4
)
r=4
r
=
4
1
2
3
4
5
6
7
..
10