Aggiorna a pro
Vai al sito
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluzioni
Calcolatore integrale
Calcolatore di derivate
Calcolatore di algebra
Calcolatore della matrice
Di più...
Grafico
Grafico lineare
Grafico esponenziale
Grafico quadratico
Grafico sinusoidale
Di più...
Calcolatrici
Calcolatore dell'IMC
Calcolatore dell'interesse composto
Calcolatore percentuale
Calcolatore dell'accelerazione
Di più...
Geometria
Calcolatore del teorema di Pitagora
Calcolatore dell'area del cerchio
Calcolatore del triangolo isoscele
Calcolatore dei triangoli
Di più...
Utensili
Notebook
Gruppi
Trucchetti
Fogli di lavoro
Guide allo studio
Pratica
Verifica soluzione
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Aggiornamento
Problemi popolari
Argomenti
Pre algebra
Algebra
Problemi di parole
Functions & Graphing
Geometria
Trigonometria
Pre Calculus
Calcoli
Dati statistici
Popolari Calcoli Problemi
derivative f(x)= 4/x
derivative
f
(
x
)
=
4
x
integral of (3x^4-x^3+6x^2)/(x^4)
∫
3
x
4
−
x
3
+
6
x
2
x
4
dx
area y=12-x^2,y=x^2-6
area
y
=
1
2
−
x
2
,
y
=
x
2
−
6
derivative of (cos(7x)^x)
d
dx
(
(
cos
(
7
x
)
)
x
)
area sqrt(x), 1/2 x,0,25
area
√
x
,
1
2
x
,
0
,
2
5
(\partial)/(\partial x)((3x-y)/(3x+y))
∂
∂
x
(
3
x
−
y
3
x
+
y
)
integral of x(2x-1)^9
∫
x
(
2
x
−
1
)
9
dx
derivative of \sqrt[8]{x}-8e^x
d
dx
(
8
√
x
−
8
e
x
)
tangent f(x)=x^2-9,(4,7)
tangent
f
(
x
)
=
x
2
−
9
,
(
4
,
7
)
(\partial)/(\partial y)(ln(x^3+y^3))
∂
∂
y
(
ln
(
x
3
+
y
3
)
)
6x+10,4x+44,x=15,x=19
6
x
+
1
0
,
4
x
+
4
4
,
x
=
1
5
,
x
=
1
9
integral from 3.5 to 7 of 274000-39200x
∫
3
.
5
7
2
7
4
0
0
0
−
3
9
2
0
0
xdx
derivative of tan(4x+4)
d
dx
(
tan
(
4
x
+
4
)
)
integral of cos^2(x/3)
∫
cos
2
(
x
3
)
dx
integral from-infinity to-1 of e^{-38t}
∫
−
∞
−
1
e
−
3
8
t
dt
sum from n=1 to infinity of 5/(n^2+16)
∑
n
=
1
∞
5
n
2
+
1
6
inverselaplace s^2+6s+7
inverselaplace
s
2
+
6
s
+
7
limit as x approaches pi/2 of x
lim
x
→
π
2
(
x
)
derivative y=(7ln(x))/(3x+4)
derivative
y
=
7
ln
(
x
)
3
x
+
4
limit as x approaches 1/3 of 3x^3+2x^2
lim
x
→
1
3
(
3
x
3
+
2
x
2
)
normal y= x/(x^2+1),\at x=-1
normal
y
=
x
x
2
+
1
,
at
x
=
−
1
(\partial)/(\partial x)(2sqrt(x*y)-1/2 x^2)
∂
∂
x
(
2
√
x
·
y
−
1
2
x
2
)
f(t)=6sin(t)
f
(
t
)
=
6
sin
(
t
)
integral from-1 to 3 of x/(x^2+4)
∫
−
1
3
x
x
2
+
4
dx
derivative of x^2+7x+12
d
dx
(
x
2
+
7
x
+
1
2
)
integral of 1/(cos(x)sin(x)+cos^2(x))
∫
1
cos
(
x
)
sin
(
x
)
+
cos
2
(
x
)
dx
integral of 8xln(7x)
∫
8
x
ln
(
7
x
)
dx
derivative of (sin(x)/(x^2))
d
dx
(
sin
(
x
)
x
2
)
integral from y to x of (e^t)/t
∫
y
x
e
t
t
dt
pendenza (32)(41.5)
slope
(
3
2
)
(
4
1
.
5
)
(\partial)/(\partial x)(x/(x^4-y^6))
∂
∂
x
(
x
x
4
−
y
6
)
integral of cos^2(x)tan^3(x)
∫
cos
2
(
x
)
tan
3
(
x
)
dx
f(x)=(e^x)/(x^2)
f
(
x
)
=
e
x
x
2
limit as x approaches 1/4 of 8x(x-1/5)
lim
x
→
1
4
(
8
x
(
x
−
1
5
)
)
limit as x approaches 0 of 1/(1-x)
lim
x
→
0
(
1
1
−
x
)
y^'=0.5(3-y)
y
′
=
0
.
5
(
3
−
y
)
y^{''}-21y^'+108y=0
y
′
′
−
2
1
y
′
+
1
0
8
y
=
0
(dy)/(dx)+8y=x^2y^2
dy
dx
+
8
y
=
x
2
y
2
(\partial)/(\partial x)(3xcos(5xy))
∂
∂
x
(
3
x
cos
(
5
xy
)
)
derivative 1/2 (x^4+7)
derivative
1
2
(
x
4
+
7
)
integral of e^x0.2
∫
e
x
0
.
2
dx
tangent f(x)=x^3-2x^2-6x+6,\at x=0
tangent
f
(
x
)
=
x
3
−
2
x
2
−
6
x
+
6
,
at
x
=
0
integral of (3x)^2
∫
(
3
x
)
2
dx
derivative of-xy^3
d
dx
(
−
xy
3
)
pendenza (-2,4),(-1,-1)
slope
(
−
2
,
4
)
,
(
−
1
,
−
1
)
integral from-a to a of (a-|x|)
∫
−
a
a
(
a
−
|
x
|
)
dx
limit as a approaches 0 of x^a
lim
a
→
0
(
x
a
)
tangent (x+7)/(x+1)
tangent
x
+
7
x
+
1
tangent y=4x^3-4x,(1,0)
tangent
y
=
4
x
3
−
4
x
,
(
1
,
0
)
integral of (x+5)(x^3+5x-10)
∫
(
x
+
5
)
(
x
3
+
5
x
−
1
0
)
dx
integral of-x^2ln(x)
∫
−
x
2
ln
(
x
)
dx
integral of 24x^{-3}
∫
2
4
x
−
3
dx
integral from 0 to pi/2 of 8cos^5(x)
∫
0
π
2
8
cos
5
(
x
)
dx
(dy)/(dx)=3x-y
dy
dx
=
3
x
−
y
laplacetransform sin(t+pi/4)
laplacetransform
sin
(
t
+
π
4
)
integral from 0 to 1 of (1-x^2)^2
∫
0
1
(
1
−
x
2
)
2
dx
(2-x)^'
(
2
−
x
)
′
derivative of-7cos(x)
d
dx
(
−
7
cos
(
x
)
)
area y=6x,y=3x^2
area
y
=
6
x
,
y
=
3
x
2
integral from 0 to 1 of 9x
∫
0
1
9
xdx
integral of xarcsec(x)
∫
x
arcsec
(
x
)
dx
integral of ((xe^{2x}))/((1+2x)^2)
∫
(
xe
2
x
)
(
1
+
2
x
)
2
dx
tangent f(x)= 1/x ,\at x=-2
tangent
f
(
x
)
=
1
x
,
at
x
=
−
2
derivative of (x^3/3+(x^2)/2-6x)
d
dx
(
x
3
3
+
x
2
2
−
6
x
)
derivative of 2e^{x^2}
d
dx
(
2
e
x
2
)
(\partial)/(\partial x)((x+y)e^x)
∂
∂
x
(
(
x
+
y
)
e
x
)
integral of 1/P
∫
1
P
dP
derivative f(t)=0.1(400-40t+t^2)
derivative
f
(
t
)
=
0
.
1
(
4
0
0
−
4
0
t
+
t
2
)
derivative of sqrt(x)+2sin(x)
d
dx
(
√
x
+
2
sin
(
x
)
)
integral of 1/(cos^2(t)*sqrt(1+tan(t)))
∫
1
cos
2
(
t
)
·
√
1
+
tan
(
t
)
dt
limit as x approaches 7-of (|x-7|)/(x-7)
lim
x
→
7
−
(
|
x
−
7
|
x
−
7
)
derivative f(x)=3x+4
derivative
f
(
x
)
=
3
x
+
4
derivative of cos^9(x^2y^6)
d
dx
(
cos
9
(
x
2
y
6
)
)
derivative sqrt(14x)
derivative
√
1
4
x
tangent xy^3+xy=2,(1,1)
tangent
xy
3
+
xy
=
2
,
(
1
,
1
)
tangent f(x)= 4/(x^2),\at x=1
tangent
f
(
x
)
=
4
x
2
,
at
x
=
1
derivative of (5x^3+7x^2/x)
d
dx
(
5
x
3
+
7
x
2
x
)
derivative of sqrt(x)-1/9 x
d
dx
(
√
x
−
1
9
x
)
limit as x approaches 0 of e
lim
x
→
0
(
e
)
sum from n=1 to infinity of (n-1)/(3n-1)
∑
n
=
1
∞
n
−
1
3
n
−
1
y^{''}+1500y=320
y
′
′
+
1
5
0
0
y
=
3
2
0
derivative f(x)=ln(18)
derivative
f
(
x
)
=
ln
(
1
8
)
integral of cos(x)sin(sin(x))
∫
cos
(
x
)
sin
(
sin
(
x
)
)
dx
area y=6cos(pix),y=8x^2-2,-0.5,0.5
area
y
=
6
cos
(
π
x
)
,
y
=
8
x
2
−
2
,
−
0
.
5
,
0
.
5
integral of 1/(2+2x)
∫
1
2
+
2
x
dx
integral of sin(ln(13x))
∫
sin
(
ln
(
1
3
x
)
)
dx
tangent f(x)=2x^2+5x,\at x=-3
tangent
f
(
x
)
=
2
x
2
+
5
x
,
at
x
=
−
3
(d^2h)/(dt^2)=-kh
d
2
h
dt
2
=
−
kh
limit as x approaches 2 of 2x^2-3x+1
lim
x
→
2
(
2
x
2
−
3
x
+
1
)
integral of (x^2)/4-1
∫
x
2
4
−
1
dx
y^{''}+36y=-36sec(6t)
y
′
′
+
3
6
y
=
−
3
6
sec
(
6
t
)
derivative of sqrt(e^x+1)
d
dx
(
√
e
x
+
1
)
derivative (arctan(x))^2
derivative
(
arctan
(
x
)
)
2
(\partial)/(\partial x)(x^6)
∂
∂
x
(
x
6
)
integral of ye^{-y/x}
∫
ye
−
y
x
dy
integral from-infinity to 0 of 1/(6-2x)
∫
−
∞
0
1
6
−
2
x
dx
derivative of 3/(sqrt(1-x^2))
d
dx
(
3
√
1
−
x
2
)
(\partial)/(\partial x)(M/(2px))
∂
∂
x
(
M
2
px
)
limit as x approaches 3 of 3x^4+2x^2-5
lim
x
→
3
(
3
x
4
+
2
x
2
−
5
)
f(x)=(-3x^2+2x+4)^{12}
f
(
x
)
=
(
−
3
x
2
+
2
x
+
4
)
1
2
1
..
7
8
9
10
11
..
1823