Aggiorna a pro
Vai al sito
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluzioni
Calcolatore integrale
Calcolatore di derivate
Calcolatore di algebra
Calcolatore della matrice
Di più...
Grafico
Grafico lineare
Grafico esponenziale
Grafico quadratico
Grafico sinusoidale
Di più...
Calcolatrici
Calcolatore dell'IMC
Calcolatore dell'interesse composto
Calcolatore percentuale
Calcolatore dell'accelerazione
Di più...
Geometria
Calcolatore del teorema di Pitagora
Calcolatore dell'area del cerchio
Calcolatore del triangolo isoscele
Calcolatore dei triangoli
Di più...
Utensili
Notebook
Gruppi
Trucchetti
Fogli di lavoro
Guide allo studio
Pratica
Verifica soluzione
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Aggiornamento
Problemi popolari
Argomenti
Pre algebra
Algebra
Problemi di parole
Functions & Graphing
Geometria
Trigonometria
Pre Calculus
Calcoli
Dati statistici
Popolari Calcoli Problemi
(\partial)/(\partial x)(7sqrt(x^2+y^2))
∂
∂
x
(
7
√
x
2
+
y
2
)
tangent f(x)=x^4-5x^2+2,\at x=2
tangent
f
(
x
)
=
x
4
−
5
x
2
+
2
,
at
x
=
2
derivative of 5(e^xcos(x-e^xsin(x)))
d
dx
(
5
(
e
x
cos
(
x
)
−
e
x
sin
(
x
)
)
)
integral of xsqrt(6-x)
∫
x
√
6
−
x
dx
limit as x approaches 3 of (x-1)/(x^2-1)
lim
x
→
3
(
x
−
1
x
2
−
1
)
inverselaplace e^{-2s} 1/(s-9)
inverselaplace
e
−
2
s
1
s
−
9
integral of 1/(sqrt(1+\sqrt{x))}
∫
1
√
1
+
√
x
dx
pendenza (0,-6),(3,-5)
slope
(
0
,
−
6
)
,
(
3
,
−
5
)
derivative y= 6/(\sqrt[4]{x)}
derivative
y
=
6
4
√
x
limit as t approaches 0 of (sin(3t)+4t)/(tsec(t))
lim
t
→
0
(
sin
(
3
t
)
+
4
t
t
sec
(
t
)
)
(\partial)/(\partial y)(5xln(xy))
∂
∂
y
(
5
x
ln
(
xy
)
)
(\partial)/(\partial x)(y^2cos(x))
∂
∂
x
(
y
2
cos
(
x
)
)
(\partial)/(\partial x)(sin(9x+yz))
∂
∂
x
(
sin
(
9
x
+
yz
)
)
derivative of (x^3-2x+4/(x^3))
d
dx
(
x
3
−
2
x
+
4
x
3
)
integral of x(5x-3)^2
∫
x
(
5
x
−
3
)
2
dx
integral of e^{3x}+1/x
∫
e
3
x
+
1
x
dx
derivative of x(dy/(dx))
d
dx
(
x
dy
dx
)
y^'+3y=2e^{-3t}
y
′
+
3
y
=
2
e
−
3
t
derivative f(x)=((sqrt(x)-2))/((2x^2+3))
derivative
f
(
x
)
=
(
√
x
−
2
)
(
2
x
2
+
3
)
integral from 2 to 3 of 1/(x^2-4x)
∫
2
3
1
x
2
−
4
x
dx
derivative 3x^4-5x+2\sqrt[3]{x}
derivative
3
x
4
−
5
x
+
2
3
√
x
derivative of ln(1-6x)
d
dx
(
ln
(
1
−
6
x
)
)
tangent-x^2+3x+4,\at x=1
tangent
−
x
2
+
3
x
+
4
,
at
x
=
1
(dy}{dx}=\frac{-e^x)/8
dy
dx
=
−
e
x
8
(\partial)/(\partial y)(xye^z)
∂
∂
y
(
xye
z
)
derivative cos(7x)
derivative
cos
(
7
x
)
limit as x approaches-1-of {2x^2-5x}
lim
x
→
−
1
−
(
{
2
x
2
−
5
x
}
)
derivative of 3sec^2(pix-1)
d
dx
(
3
sec
2
(
π
x
−
1
)
)
tangent f(x)=(x^2)/(x+1),\at x=2
tangent
f
(
x
)
=
x
2
x
+
1
,
at
x
=
2
integral of 20(e^{3/4 x}-e^{2x})
∫
2
0
(
e
3
4
x
−
e
2
x
)
dx
integral from 4 to infinity of 7e^{-y/2}
∫
4
∞
7
e
−
y
2
dy
(\partial)/(\partial y)(xye^{x+y})
∂
∂
y
(
xye
x
+
y
)
integral of (sin(2x)-sin(3x))^2
∫
(
sin
(
2
x
)
−
sin
(
3
x
)
)
2
dx
tangent f(x)= 5/x ,(3, 5/3)
tangent
f
(
x
)
=
5
x
,
(
3
,
5
3
)
(\partial)/(\partial t)(e^{-2x}cos(9pit))
∂
∂
t
(
e
−
2
x
cos
(
9
π
t
)
)
taylor 1/2 arctan(2x)
taylor
1
2
arctan
(
2
x
)
sum from n=1 to infinity of 3e^{-4n}
∑
n
=
1
∞
3
e
−
4
n
tangent f(x)= 1/(x^2+4),(1, 1/5)
tangent
f
(
x
)
=
1
x
2
+
4
,
(
1
,
1
5
)
integral of 3e^x-3xe^{x^2}
∫
3
e
x
−
3
xe
x
2
dx
integral of ,^2x
∫
,
2
xdx
derivative of kx+d
d
dx
(
kx
+
d
)
derivative of 2(x-2^2+1)
d
dx
(
2
(
x
−
2
)
2
+
1
)
integral of 1/(2x^3-3x^2)
∫
1
2
x
3
−
3
x
2
dx
derivative x^2(3-x)
derivative
x
2
(
3
−
x
)
derivative cy^{-6}
derivative
cy
−
6
limit as x approaches 1 of x^3-2x^2+x-3
lim
x
→
1
(
x
3
−
2
x
2
+
x
−
3
)
derivative x^6
derivative
x
6
derivative of (90/x)
d
dx
(
9
0
x
)
limit as x approaches infinity of x^2+1
lim
x
→
∞
(
x
2
+
1
)
derivative of 1/3 pix^2y
d
dx
(
1
3
π
x
2
y
)
integral of tan^4(7x)
∫
tan
4
(
7
x
)
dx
(\partial)/(\partial x)(cos(x)sin(x)-xy)
∂
∂
x
(
cos
(
x
)
sin
(
x
)
−
xy
)
(\partial)/(\partial x)(4)
∂
∂
x
(
4
)
derivative ax+b
derivative
ax
+
b
tangent ((3x))/((1+x^2))
tangent
(
3
x
)
(
1
+
x
2
)
integral of tan(5v)sec(5v)
∫
tan
(
5
v
)
sec
(
5
v
)
dv
(dy)/(dt)=20-y/(230+t)
dy
dt
=
2
0
−
y
2
3
0
+
t
inverselaplace 1/((x+3)^2)
inverselaplace
1
(
x
+
3
)
2
integral of tanh(x)
∫
tanh
(
x
)
dx
(\partial)/(\partial z)(xyz^2)
∂
∂
z
(
xyz
2
)
derivative of sin(3x+cos(3x))
d
dx
(
sin
(
3
x
)
+
cos
(
3
x
)
)
integral of 7arccos(x)
∫
7
arccos
(
x
)
dx
integral of 1/(sqrt(x^2+b^2))
∫
1
√
x
2
+
b
2
dx
integral of sqrt(e^{2x)+x}*(e^{2x}+1/2)
∫
√
e
2
x
+
x
·
(
e
2
x
+
1
2
)
dx
derivative f(x)=x^x(ln(x)+1)
derivative
f
(
x
)
=
x
x
(
ln
(
x
)
+
1
)
derivative f(x)=xe^{4x}
derivative
f
(
x
)
=
xe
4
x
(\partial)/(\partial y)(sin(x^2-y^2))
∂
∂
y
(
sin
(
x
2
−
y
2
)
)
derivative cos(e^x)
derivative
cos
(
e
x
)
integral from 1 to infinity of 3^{-x}
∫
1
∞
3
−
x
dx
integral from 0 to 3 of sqrt(5)
∫
0
3
√
5
dx
integral of-ln(1-x)
∫
−
ln
(
1
−
x
)
dx
tangent sqrt(x)+sqrt(y)=sqrt(2)
tangent
√
x
+
√
y
=
√
2
integral of cos^3(x/(18))
∫
cos
3
(
x
1
8
)
dx
integral of (sqrt(5x+1))
∫
(
√
5
x
+
1
)
dx
tangent y=(5x)/(x+2),(3,3)
tangent
y
=
5
x
x
+
2
,
(
3
,
3
)
(\partial)/(\partial x)(1(x-y)e^{y+2x^2})
∂
∂
x
(
1
(
x
−
y
)
e
y
+
2
x
2
)
y+y^{''}=0
y
+
y
′
′
=
0
limit as x approaches 0+of x/(x+|x|)
lim
x
→
0
+
(
x
x
+
|
x
|
)
(\partial)/(\partial x)(z^3-3xyz)
∂
∂
x
(
z
3
−
3
xyz
)
(\partial)/(\partial x)(e^{9xe^y})
∂
∂
x
(
e
9
xe
y
)
(\partial)/(\partial x)(sin^2(3x))
∂
∂
x
(
sin
2
(
3
x
)
)
integral of csc^9(x)
∫
csc
9
(
x
)
dx
limit as x approaches 0 of x^2-3x+3
lim
x
→
0
(
x
2
−
3
x
+
3
)
derivative of (2x/(sqrt(x)))
d
dx
(
2
x
√
x
)
limit as x approaches 0+of 3/x
lim
x
→
0
+
(
3
x
)
integral of x^{27}e^{x^{28}}
∫
x
2
7
e
x
2
8
dx
integral of cos^4(7x+8)
∫
cos
4
(
7
x
+
8
)
dx
integral of ln(10x)
∫
ln
(
1
0
x
)
dx
y^'-4/x y=(y^3)/(x^4)
y
′
−
4
x
y
=
y
3
x
4
integral of 5xe^{5x}
∫
5
xe
5
x
dx
integral of 1/(x^2-14x+68)
∫
1
x
2
−
1
4
x
+
6
8
dx
(dy)/(dx)+(y/x)=7x^3y^2
dy
dx
+
(
y
x
)
=
7
x
3
y
2
(\partial)/(\partial x)(25x^{3/4}y^{1/4})
∂
∂
x
(
2
5
x
3
4
y
1
4
)
integral of-csc^2(x)
∫
−
csc
2
(
x
)
dx
(dy)/(dt)=y
dy
dt
=
y
derivative y=sqrt(2x-1)
derivative
y
=
√
2
x
−
1
tangent 7+2e^x-4x^4x-y=9
tangent
7
+
2
e
x
−
4
x
4
x
−
y
=
9
(\partial)/(\partial x)(x^{2x})
∂
∂
x
(
x
2
x
)
limit as t approaches 1 of (t^3-1)/(t-1)
lim
t
→
1
(
t
3
−
1
t
−
1
)
limit as x approaches+0-of 6/(5x^{1/3)}
lim
x
→
+
0
−
(
6
5
x
1
3
)
1
2
3
4
5
6
7
..
1823